A General and Stereocontrolled Strategy for the Iterative Assembly of Enantiopure Polypropionate Subunits: Synthesis of the C19-C28 Segment of Rifamycin S from a Single Chiron

Stephen Hanessian,* Wengui Wang, Yonghua Gai, and Eric Olivier
Contribution from the Department of Chemistry, Université de Montréal, P. O. Box 6128, Station Centre-ville, Montreal, QC, Canada H3C 3J7

Received January 27, 1997^{\star}

Abstract

An operationally simple method has been developed for the stereocontrolled construction of polypropionate stereotriads in high enantio- and diastereomeric purities. The method consists of the stereocontrolled addition of lithium dimethylcuprate to an enantiopure γ-alkoxy- α, β-unsaturated ester, followed by hydroxylation of the corresponding enolate. This leads to an anti/syn orientation of the γ-alkoxy- β-methyl- α-hydroxy ester unit. Chain extension and reiteration of the process, after appropriate functionalization, lead ultimately to an 11-carbon acyclic chain harboring three contiguous polypropionate triads with the correct anticipated absolute configuration. The method relies on two basic bond-forming reactions that involve consecutive 1,2 -induction. It is admirably stereocontrolled through four iterative cycles of cuprate additions and hydroxylations. Inversion of the α-alkoxy group after each α-hydroxylation allows passage to stereotriads of different configurations. Thus three of the four possible stereotriad combinations are accessible directly using this simple and general method. The C19-C28 acyclic chain of rifamycin S , harboring eight stereogenic carbon atoms (three triads), was constructed starting with an enantiopure precursor that contains a single stereogenic center. A common precursor serves as the starting chiron for a variety of other propionate derived macrolides and ionophores.

The polypropionate pathway is a ubiquitous route for the biosynthesis of important classes of antibiotics such as the macrolides and the ionophores. ${ }^{1}$ The relevance of these natural products as therapeutic agents and as biochemical tools coupled with their architecturally interesting arrays of functional groups have been challenging issues for synthetic organic chemists for over two decades. ${ }^{2}$ In practice, each propionate-derived stereotriad^{3} consisting of an alternating methyl-hydroxy-methyl array can be constructed individually by adopting the venerable aldol condensation via its numerous asymmetric versions ${ }^{4}$ or by employing other strategies. ${ }^{5}$ Clearly the presence of more than one stereotriad encompassing multiple contiguous stereogenic centers and the control of absolute stereochemistry in a given molecule presents a major challenge in stereoselective synthesis.

[^0]Previous work in this laboratory ${ }^{6}$ has demonstrated that the conjugate addition of lithium dimethylcuprate to an enantiopure γ-alkoxy- α, β-unsaturated ester followed by hydroxylation of the corresponding potassium enolate with the Davis oxaziridine reagent ${ }^{7}$ led to an anti/syn relationship of the original alkoxy group with respect to the two newly introduced stereogenic centers. This protocol has also been extended to other cuprates ${ }^{6 b}$ as well as to other electrophilic reagents such as trisyl azide ${ }^{8}$ resulting in the same overall relative configuration of the three contiguous stereocenters. Interestingly, application of the same reaction sequence to a γ-ureido- α, β-unsaturated ester afforded the syn alkylated product, ${ }^{6 a, 8}$ which upon hydroxylation or azidation of the corresponding potassium enolate led to the syn/ syn substitution pattern. ${ }^{8}$

In view of the high degree of stereocontrol in the conjugate addition and enolate trapping, it was of interest to explore the possibility of iterating the process. ${ }^{9}$ Starting from the aforementioned enantiopure γ-alkoxy- α, β-unsaturated ester and installing vicinal methyl/hydroxyl groups, one could, a priori, effect a chain extension via Wittig methodology, thus generating a new γ-alkoxy- α, β-unsaturated ester motif. A conjugate addition-hydroxylation protocol would complete the first propionate-type stereotriad which can be once again subjected to chain-extension and reiteration of the process. If each cycle of conjugate addition and hydroxylation were to proceed according to the original stereochemical pattern, one would have sets of stereotriad with an overall anti/syn/anti relationship

[^1]
Scheme 1

starting with the original γ-alkoxy- α, β-unsaturated ester of known configuration.

This operationally simple strategy is shown in Scheme 1, where it can also be seen that following each iteration the hydroxy group introduced via a Davis hydroxylation ${ }^{6 b, 7}$ of the corresponding potassium enolate can, in principle, be inverted by a Mitsunobu reaction. ${ }^{10}$ The iteration could then be continued as described above, with the option to grow polypropionate stereotriads having diastereomeric relationships at will. This simple protocol can give rise to all combinations of stereotriads shown as types B, C, and D (Scheme 1), the latter pattern being considered as "arduously accessible" by other means. ${ }^{5 c}$ The syn/syn motif in A cannot be prepared by the above protocol because of the inherent stereochemical outcome of the conjugate addition and subsequent hydroxylation. This particular stereotriad can be obtained indirectly by an oxidationreduction sequence ${ }^{11}$ from a motif related to D , with functionally different ends.

We report herein the implementation of the strategy outlined in Scheme 1 with the synthesis of the C19-C28 acyclic segment of rifamycin $\mathrm{S},{ }^{12}$ encompassing eight contiguous stereogenic centers (three propionate triads) (Figure 1). This ten carbon subunit can be obtained from a chiron harboring an anti/syn/ anti/syn stereotriad unit (C23-C27), which in turn can be elaborated from D-mannitol. Since Nature's polypropionate pathway to macrolides has relatively few variants when one or two stereotriads are considered, ${ }^{13}$ it is of interest that the stereochemical requirements found in subunits of elaiophylin ${ }^{14}$ and bafilomycin $\mathrm{A}_{1}{ }^{15}$ can also be elaborated upon from the common chiron shown in Figure 1.

The synthesis of the above mentioned chiron started with the known precursor $\mathbf{3},{ }^{6}$ readily available in enantiomericaly pure

[^2]form from 1 (Scheme 2). Protection of the hydroxy group as the MOM ether as in $\mathbf{4}$, reduction of the ester group with Dibal-H to the alcohol, and Swern oxidation afforded the corresponding aldehyde, which was transformed to the γ-alkoxyα, β-unsaturated ester 5 in excellent overall yield. The cuprate addition and enolate hydroxylation sequence was now ready to face its stereochemical test, since the influence of coordination by the resident BOM and MOM groups could be a critical factor. In the event, the α, β-unsaturated ester 5 was treated with lithium dimethylcuprate in the presence of excess TMSCl in THF at $-78{ }^{\circ} \mathrm{C}$ as was done in the case of $\mathbf{1}$. The adduct $\mathbf{6}$ obtained in 85% yield consisted of a major diastereomer as indicated by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR. Formation of the potassium enolate in the presence of KHMDS in THF at $-78^{\circ} \mathrm{C}$ and treatment with the Davis oxaziridine reagent ${ }^{7}$ at that temperature led to the α-hydroxy ester 7 in 75% yield. The anticipated syn-relationship at the two new stereogenic centers in 7 was verified by a transformation to the lactone $\mathbf{8}$ and an X-ray single crystal analysis (Scheme 2). Since the lactonization was effected in good yield and a crystalline product was obtained, we could safely conclude that the stereochemical outcome of the cuprate addition and the α-hydroxylation reactions was as depicted in expression 7.

Having installed the desired syn/anti stereotriad in the common chiron 7, which corresponds to C24-C26 in rifamycin S (Figure 1), we proceeded with the elaboration of the entire acyclic subunit. In order to achieve the desired stereochemical relationship, it was necessary to extend the acyclic motif from its other extremity. Reduction of the ester, tritylation of the primary hydroxy group and methylation of the secondary hydroxy group afforded 9 (Scheme 3). Desilylation followed by a Swern oxidation and a Wittig extension gave the α, β unsaturated ester intermediate $\mathbf{1 0}$ in excellent overall yield.

We were once again poised to effect a conjugate cuprate addition and enolate hydroxylation reaction sequence, hoping for a reasonable level of stereoselectivity in an arguably challenging acyclic substrate. Addition of lithium dimethylcuprate to $\mathbf{1 0}$ under the same condition as for $\mathbf{1}$ and for $\mathbf{5}$ led to a major adduct $\mathbf{1 1}$ in 83% yield. The fidelity of the stereochemical outcome of this reaction was to be ascertained after a

[^3]

Figure 1.
Scheme $\mathbf{2}^{a}$

${ }^{a}$ a. $\mathrm{Me}_{2} \mathrm{CuLi}$, TMSCl, THF, $-78^{\circ} \mathrm{C}$; b. KHMDS, THF, $-78^{\circ} \mathrm{C}$; Davis oxaziridine; c. MOMCl, Hunig's base, $\mathrm{CH}_{2} \mathrm{Cl} 2$; d. Dibal- H , 97%; e. Swern oxidation; f. $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 96 \%$, two steps; g. $\mathrm{TMSBr}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-40{ }^{\circ} \mathrm{C}$.
subsequent α-hydroxylation and lactonization. Thus, treatment of the potassium enolate of $\mathbf{1 1}$ in THF at $-78{ }^{\circ} \mathrm{C}$, with the Davis oxaziridine reagent, gave the α-hydroxylated ester $\mathbf{1 2}$ in 76% as a major isomer. Hydrogenolysis of the BOM group in $\mathbf{1 2}$ gave the crystalline lactone $\mathbf{1 3}$ in 80% yield. The absolute stereochemistry of $\mathbf{1 3}$, hence the stereochemical outcome of the conjugate addition-hydroxylation reactions, was definitely established from an X-ray analysis (Scheme 3).

Remarkably, two contiguous stereotriads harboring an antil anti/syn/anti relationship, corresponding to C22-C26 subunit of rifamycin S , was assembled in a linear sequence, on an acyclic substrate, relying on a consecutive 1,2-induction protocol.

There remained to introduce an additional C-methyl group at C20 in order to complete the entire set of the polypropionate unit required in our intended target. The α-hydroxy group in 12 was protected as the BOM ether and the ester group was reduced to the alcohol $\mathbf{1 4}$ (Scheme 4). Oxidation and Wittig extension in the usual manner afforded the α, β-unsaturated ester $\mathbf{1 5}$ in excellent overall yield. Treatment of $\mathbf{1 5}$ with lithium dimethylcuprate in the presence of TMSCl at $-78{ }^{\circ} \mathrm{C}$ gave a major isomer corresponding to 16 . For the purpose of functionalization and possible cleavage to an usable active group (i.e., an aldehyde), $\mathbf{1 6}$ was subjected to an α-hydroxylation
reaction to give the corresponding α-hydroxy ester 17. Removal of the BOM protective groups by hydrogenolysis afforded the γ-lactone 18. Detailed NMR analysis confirmed the syn relationship of the C-methyl and α-hydroxy group, thus validating the stereochemistry of the last two critical reactions in going from 15 to 17.

Thus, starting with one stereogenic center in $\mathbf{1}$, it was possible to assemble the acyclic $\mathrm{C} 19-\mathrm{C} 28$ subunit of rifamycin S , which contains the longest sequence of contiguous propionate-derived units among the macrolides and ansa antibiotics. A remarkable and unprecedented feature in this strategy is the consistently high stereocontrol achieved over four rounds of consecutive conjugate additions with lithium dimethylcuprate, and enolate hydroxylations with the Davis reagent, on a growing acyclic chain. It is equally remarkable that the stereochemical outcome of these two reactions seems to be unaffected by the variation in stereogenicity, by the number of potentially coordinating alkoxy groups, or by sterically impeding C-methyl groups situated in the molecule.

There are numerous precedents ${ }^{6,16}$ to the stereocontrolled addition of organocuprates to γ-substituted- α, β-unsaturated esters. Usually, the major alkylated product in such cases where the γ-substituent is an alkoxy group is anti, resulting from a nonchelated mode of attack. The syn-hydroxylation of an

Scheme 3^{a}

Scheme 4^{a}

15

Rifamycin \mathbf{S}
${ }^{a}$ a. $\mathrm{BOMCl}, \mathrm{iPr}_{2} \mathrm{NEt}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 77 \%$; b. Dibal-H; c. Swern oxidation; d. $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; e. $\mathrm{Me}_{2} \mathrm{CuLi}$, TMSCl, THF, $-78{ }^{\circ} \mathrm{C}$; f. KHMDS , THF, $-78{ }^{\circ} \mathrm{C}$; Davis oxaziridine; g. $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{H}_{2}$.
enolate harboring an alkyl group at the β-carbon atom can be predicted according to Houk's model studies in simple systems. ${ }^{17}$ Limited experimental studies have also confirmed this stereochemical outcome. ${ }^{18}$

We have previously commented on the stereochemical course of the cuprate additions to $\mathbf{1},{ }^{6 a}$ where a nonchelated approach seems to be operative (Figure 2A). A mechanistic rationale for the syn-hydroxylation of the potassium enolate follows the simple examples studied by Morizawa with β-trifluoromethyl ester enolates ${ }^{18}$ (Figure 2B). What is particularly interesting in the present study is that the above model transition states appear to be operational in more complex and densely functionalized acyclic substrates.

The operational simplicity and high predictive power of the strategy for polypropionate assembly outlined in this paper has been successfully applied to the assembly of the $\mathrm{C} 1-\mathrm{C} 10$ and $\mathrm{C} 11-\mathrm{C} 24$ segments of bafilomycin A1 ${ }^{19}$ and of hygrolidin ${ }^{20}$

[^4]

A

B

Figure 2. Possible transition states for the addition of lithium dimethylcuprate (A), and enolate hydroxylation (B).
respectively, as well as of the requisite triad units in elaiophylin ${ }^{21}$ and scytophycin C^{22} starting with a common chiron 4. As such,

[^5]the strategy should be of general utility for all propionate-derived natural products.

Experimental Section

All commercially available reagents were used without further purification unless otherwise noted. Davis oxaziridine was prepared according to the literature procedure. ${ }^{7 \mathrm{~b}}$ The solvents were distilled under positive pressure of dry nitrogen before use: THF from potassium benzophenone ketyl and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from CaH_{2}. All reactions were performed under nitrogen atmosphere with oven or flame-dried glassware. NMR $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\right)$ spectra were recorded on a 300 MHz or a 400 MHz spectrometer in CDCl_{3} with $\mathrm{CHCl}_{3}(\mathrm{H}, \delta=7.26 \mathrm{ppm} ; \mathrm{C}, \delta$ $=77.0 \mathrm{ppm}$) as internal reference. DEPT experiments were performed routinely, methylene gives negative signal $(-)$, and carbon without hydrogen gives no signal (0). X-ray analysis was performed using graphite monochromatized Mo $\mathrm{K} \alpha$ radiation, and the structure was solved using direct methods (MULTAN80) and difference Fourier calculations (SHELX76). Low resolution mass spectra (MS) and high resolution mass spectra (HRMS) were determined with desorption chemical ionization (CI) or fast atom bombardment (FAB). Infrared spectra (IR) were recorded in a chloroform solution with sodium chloride cell. Optical rotations were measured at the sodium line at ambient temperature. Flash column chromatography ${ }^{23}$ was performed on E. Merck silica gel $60(40-60 \mu \mathrm{~m})$. Melting points are uncorrected.
(3S, 4S)-4-[(Benzyloxy)methoxy]-5-(tert-butyldiphenylsilanyloxy)-3-methylpentanoic Acid Methyl Ester (2). To a suspension of CuI $(7.17 \mathrm{~g}, 37.7 \mathrm{mmol})$ in THF $(400 \mathrm{~mL})$ was added $\mathrm{MeLi} \cdot \mathrm{LiBr}(1.5 \mathrm{M}$ in ether, $50.34 \mathrm{~mL}, 75.5 \mathrm{mmol}$) at $-15^{\circ} \mathrm{C}$, and the mixture was allowed to warm up to $0^{\circ} \mathrm{C}$ over 30 min and then cooled to $-78^{\circ} \mathrm{C}$. To the resulting mixture was added $\mathrm{Me}_{3} \mathrm{SiCl}(19.0 \mathrm{~mL}, 151 \mathrm{mmol})$ followed by a solution of $\mathbf{1}(6.34 \mathrm{~g}, 12.5 \mathrm{mmol})$ in THF $(60 \mathrm{~mL})$. The reaction was continued for 3 h at $-78^{\circ} \mathrm{C}$ and then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$. The mixture was diluted with AcOEt $(600 \mathrm{~mL})$ and concentrated $\mathrm{NH}_{4} \mathrm{OH}(100 \mathrm{~mL})$. The aqueous layer was extracted with AcOEt $(3 \times 200 \mathrm{~mL})$, and the combined organic extracts were washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{4} \mathrm{OH}(1: 1,200 \mathrm{~mL})$, saturated $\mathrm{NH}_{4} \mathrm{Cl}(200$ $\mathrm{mL})$, and brine (200 mL) and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by chromatography to afford 2 as an oil $(6.04 \mathrm{~g}$, $92 \%):[\alpha]_{\mathrm{D}}-21.7^{\circ}\left(c 1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta(\mathrm{ppm})=7.70-7.66$ $(\mathrm{m}, 4 \mathrm{H}), 7.44-7.26(\mathrm{~m}, 11 \mathrm{H}), 4.86(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79-3.67(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.58(\mathrm{~m}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=$ $4.36,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=9.29,15.0 \mathrm{~Hz}, 1 \mathrm{H})$, $1.06(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
(2S,3S,4S)-4-[(Benzyloxy)methoxy]-5-(tert-butyldiphenyl-silanyloxy)-2-hydroxy-3-methylpentanoic Acid Methyl Ester (3). To a solution of $2(5.96 \mathrm{~g}, 11.5 \mathrm{mmol})$ in THF (120 mL) was added KHMDS (0.5 M in toluene, $27.5 \mathrm{~mL}, 13.7 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 min , and a solution of the Davis oxaziridine $^{7 \mathrm{~b}}(4.48 \mathrm{~g}, 17.2 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ was added. The reaction was continued for 3 h at $-78^{\circ} \mathrm{C}$ and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with AcOEt $(3 \times 100 \mathrm{~mL})$, and the combined organic extracts were washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by chromatography to give 3 as an oil $(5.59 \mathrm{~g}, 91 \%)$: $[\alpha]_{\mathrm{D}}-10.3^{\circ}(c 0.7$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta(\mathrm{ppm})=7.70-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.26(\mathrm{~m}, 11 \mathrm{H})$, $4.84(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-$ $3.84(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.67(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}$, $9 \mathrm{H}), 0.83(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta(\mathrm{ppm})=175.12,137.47$, $135.52,133.12,129.62,128.27,127.70,127.59,94.56,79.52,70.44$, 69.81, 63.95, 52.25, 37.71, 26.69, 19.10, 10.07; IR (neat): 3530, 2960,

[^6]2940, 2860, 1780, 1460, 1280, $1140 \mathrm{~cm}^{-1}$; HRMS: $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{SiNa}$, calcd: 559.2492; found: 559.2518
(2S,3R,4S)-4-[(Benzyloxy)methoxy]-5-(tert-butyldiphenylsilan-yloxy)-2-methoxymethoxy-3-methylpentanoic Acid Methyl Ester (4). To a solution of $\mathbf{3}(16.3 \mathrm{~g}, 30.4 \mathrm{mmol})$, diisopropylethylamine (52.8 $\mathrm{mL}, 304 \mathrm{mmol})$, and DMAP $(1.8 \mathrm{~g}, 15.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added dropwise $\mathrm{MOMCl}(23.2 \mathrm{~mL}, 304 \mathrm{mmol})$. The resulting mixture was stirred at room temperature. After 24 h , more diisopropylethylamine ($50.0 \mathrm{~mL}, 287 \mathrm{mmol}$) and $\mathrm{MOMCl}(20.0 \mathrm{~mL}$, 262 mmol) were added at $0^{\circ} \mathrm{C}$, and the mixture was stirred for a further 24 h at room temperature. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200$ $\mathrm{mL})$, then washed with $2 \% \mathrm{HCl}(2 \times 200 \mathrm{~mL})$, saturated NaHCO_{3} $(200 \mathrm{~mL})$, and brine $(200 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by chromatography to afford 4 as an oil $(16.2 \mathrm{~g}$, $92 \%):[\alpha]_{\mathrm{D}}-4.2^{\circ}\left(c 1.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta(\mathrm{ppm})=7.73-7.67$ $(\mathrm{m}, 4 \mathrm{H}), 7.44-7.25(\mathrm{~m}, 11 \mathrm{H}), 4.84(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.70-4.54(\mathrm{~d}, \mathrm{~d}, \mathrm{~d}, \mathrm{~d}, \mathrm{~d}, 4 \mathrm{H}), 4.50(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.93 (dd, $J=2.8,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.70(\mathrm{~s}, \mathrm{~m}, 4 \mathrm{H}), 3.64-3.62(\mathrm{~m}$, $1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.42(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 0.93(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta(\mathrm{ppm})=173.14,137.73,135.58,135.54,133.26$, $133.22,129.58,128.22,127.57,127.53,127.43,96.93,94.90,79.70$, $76.16,69.72,64.72,56.29,51.70,38.47,26.72,19.15,10.31$; IR (neat): 2960, 2940, 2880, 1750, 1430, 1120, $1050 \mathrm{~cm}^{-1}$; HRMS: $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{O}_{7} \mathrm{SiNa}$, calcd: 603.2754, found: 603.2784.
(4R,5S,6S)-6-[(Benzyloxy)methoxy]-7-(tert-butyldiphenylsilan-yloxy)-4-methoxymethoxy-5-methylhept-2-enoic Acid Methyl Ester (5). To a solution of $4(14.1 \mathrm{~g}, 24.3 \mathrm{mmol})$ in THF $(250 \mathrm{~mL})$ at -78 ${ }^{\circ} \mathrm{C}$ was added DIBAL-H (1.0 M in toluene, $55.9 \mathrm{~mL}, 55.9 \mathrm{mmol}$) dropwise over 30 min , and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The mixture was cooled to $-78^{\circ} \mathrm{C}$, quenched with saturated $\mathrm{NH}_{4}-$ Cl , and then diluted with AcOEt and $2 \% \mathrm{HCl}$. The aqueous layer was extracted with $\mathrm{AcOEt}(3 \times 200 \mathrm{~mL})$, and the combined organic layers were washed with saturated NaHCO_{3}, saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by chromatography to afford the product as an oil $(13.0 \mathrm{~g}, 97 \%):[\alpha]_{\mathrm{D}}+3.1^{\circ}(c$ 1.1, CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR:} \delta(\mathrm{ppm})=7.72-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.27(\mathrm{~m}$, $11 \mathrm{H}), 4.87(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J$ $=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~s}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.54$ $(\mathrm{m}, 6 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 0,91(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}: ~ \delta(\mathrm{ppm})=137.64,135.54,135.50,133.25$, 129.57, 128.26, 127.61, 127.57, 127.54, 127.50, 97.78, 80.11, 69.74, $65.44,64.19,55.36,37.56,26.72,19.11,10.47$; IR (neat): 3460,2930 , 2890, 1430, $1110 \mathrm{~cm}^{-1}$; HRMS: $\mathrm{C}_{32} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{SiNa}$, calcd: 575.2804, found: 575.2762.

To a solution of oxalyl chloride ($3.8 \mathrm{~mL}, 43.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(100 \mathrm{~mL})$ at $-70{ }^{\circ} \mathrm{C}$ was added DMSO $(6.2 \mathrm{~mL}, 87.0 \mathrm{mmol})$, the resulting mixture was stirred for 15 min during which time the temperature was allowed to rise to $-55^{\circ} \mathrm{C}$, and then a solution of the above alcohol ($8.0 \mathrm{~g}, 14.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added. The reaction mixture was warmed to $-40^{\circ} \mathrm{C}$ during 20 min , triethylamine ($20.2 \mathrm{~mL}, 145 \mathrm{mmol}$) was added, and then the temperature was allowed to rise further to $-30^{\circ} \mathrm{C}$ over 30 min . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}(100 \mathrm{~mL})$, and the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(400 \mathrm{~mL})$, then washed with $2 \% \mathrm{HCl}(2 \times 200 \mathrm{~mL})$, saturated $\mathrm{NaHCO}_{3}(2 \times 200 \mathrm{~mL})$, and brine $(200 \mathrm{~mL})$, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ for 2 h . The solvent was removed, and the crude aldehyde was dried using an oil pump for 2 h .

To a solution of the above crude aldehyde in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added methyl (triphenylphosphoranylidene) acetate ($9.7 \mathrm{~g}, 29 \mathrm{mmol}$), and the resulting mixture was stirred for 14 h at room temperature. After removal of the solvent, the residue was purified by chromatography to afford 5 as an oil $(8.5 \mathrm{~g}, 96 \%)$: $[\alpha]_{\mathrm{D}}-14.4^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta(\mathrm{ppm})=7.70-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.24(\mathrm{~m}, 11 \mathrm{H}), 6.94$ $(\mathrm{dd}, J=5.7,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{dd}, J=1.4,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.50(\mathrm{~m}, 5 \mathrm{H}), 3.89-$ $3.86(\mathrm{dd}, J=3.3,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.72(\mathrm{~s}, \mathrm{~m}, 7 \mathrm{H}), 3.68-3.66(\mathrm{~m}$, $1 \mathrm{H}), 2.13-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 0.91(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR: $\delta(\mathrm{ppm})=166.46,148.36,137.84,135.56,135.52,133.33$, $133.29,129.56,128.19,127.56,127.53,127.51,127.39,121.47,95.71$, 94.95, 79.83, 76.28, 69.70, 64.30, 55.85, 51.36, 40.05, 26.77, 19.12, 9.91; IR (neat): $2950,1730,1430,1275,1115,1040 \mathrm{~cm}^{-1}$; HRMS: $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{O}_{7} \mathrm{SiNa}$, calcd: 629.2910, found: 629.2911.
(3R,4R,5S,6S)-6-[(Benzyloxy)methoxy]-7-(tert-butyldiphenyl-silanyloxy)-4-methoxymethoxy-3,5-dimethylheptanoic Acid Methyl Ester (6). To a suspension of $\mathrm{CuI}(4.17 \mathrm{~g}, 21.9 \mathrm{mmol})$ in THF (150 $\mathrm{mL})$ was added $\mathrm{MeLi} \cdot \mathrm{LiBr}(1.5 \mathrm{M}$ in ether, $29.2 \mathrm{~mL}, 43.8 \mathrm{mmol})$ at $-15^{\circ} \mathrm{C}$, and the mixture was allowed to warm up to $0^{\circ} \mathrm{C}$ over 30 min and then cooled to $-78^{\circ} \mathrm{C}$. To the resulting mixture were added $\mathrm{Me}_{3^{-}}$ $\mathrm{SiCl}(11.1 \mathrm{~mL}, 87.2 \mathrm{mmol})$ and a solution of $5(4.4 \mathrm{~g}, 7.3 \mathrm{mmol})$ in THF (20 mL). The reaction was continued for 3 h at $-78^{\circ} \mathrm{C}$ and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was diluted with AcOEt and concentrated $\mathrm{NH}_{4} \mathrm{OH}$. The aqueous layer was extracted with AcOEt, and the combined organic extracts were washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{4} \mathrm{OH}(1: 1)$, saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by chromatography to afford 6 as an oil $(3.8 \mathrm{~g}, 85 \%)$: $[\alpha]_{\mathrm{D}}-14.8^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-$ NMR: $\delta(\mathrm{ppm})=7.72-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.26(\mathrm{~m}, 11 \mathrm{H}), 4.88(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-4.54(\mathrm{~m}, 4 \mathrm{H}), 3.90-$ $3.86(\mathrm{dd}, J=3.2,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.73(\mathrm{dd}, J=4.5,11.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.68-3.56(\mathrm{~s}, \mathrm{~m}, 5 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.64-2.58(\mathrm{dd}, J=4.1,14.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.30-2.05(\mathrm{~m}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 0.97(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.89$ $(\mathrm{d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta(\mathrm{ppm})=173.64,137.83,135.81$, $135.50,135.46,133.26,129.51,128.13,127.79,127.51,127.47,127.31$, $98.24,94.83,82.86,80.60,69.62,64.10,55.61,51.15,37.85,36.53$, 33.83, 26.67, 19.08, 16.89, 10.14; IR (neat): 2950, 2890, 1740, 1430, 1115, $1040 \mathrm{~cm}^{-1}$; HRMS: $\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{O}_{7} \mathrm{SiNa}$, calcd: 645.3223, found: 645.3252.
(2R,3R,4R,5S,6S)-6-[(Benzyloxy)methoxy]-7-[(tert-butyldiphenyl-silanyl)oxy]-2-hydroxy-4-methoxymethoxy-5-methylheptanoic Acid Methyl Ester (7). To a solution of $6(3.58 \mathrm{~g}, 5.76 \mathrm{mmol})$ in THF $(100 \mathrm{~mL})$ was added KHMDS $(0.5 \mathrm{M}$ in toluene, $16.1 \mathrm{~mL}, 8.0 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 min , and a solution of the Davis oxaziridine reagent ${ }^{7 \mathrm{~b}}(3.0 \mathrm{~g}, 115 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ was added. The reaction was continued for 3 h at $-78^{\circ} \mathrm{C}$ and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with AcOEt , and the combined organic extracts were washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by chromatography to give 7 as an oil $(3.0 \mathrm{~g}, 80 \%)$: $[\alpha]_{\mathrm{D}}-17.2^{\circ}$ (c 1.1, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta(\mathrm{ppm})=7.70-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.27(\mathrm{~m}, 11 \mathrm{H})$, $4.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=6.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}$, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.80-$ $3.72(\mathrm{~s}, \mathrm{~m}, 4 \mathrm{H}), 3.61-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.05(\mathrm{~m}, 2 \mathrm{H})$, $1.06(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}: ~ \delta(\mathrm{ppm})=175.38,137.78,135.51,133.30,129.55,128.18$, $127.63,127.56,127.51,127.39,98.86,94.89,80.66,80.62,70.58,69.89$, $64.32,55.71,52.17,39.38,36.45,26.71,19.14,10.60,9.53$; IR (neat): 3520, 2950, 1738, 1430, 1150, 1120, $1040 \mathrm{~cm}^{-1}$; HRMS: $\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{O}_{8}{ }^{-}$ SiNa, calcd: 661.3172, found: 661.3202.
(3R,4R,5S)-5-[(1R, 2S)-3-(tert-Butyldiphenylsilanyloxy)-2-hydroxy-1-(methylpropyl)]-3-hydroxy-4-methyldihydrofuran-2-one (8). To a solution of $7(36 \mathrm{mg}, 0.056 \mathrm{mmol})$ in dry dichloromethane $(1 \mathrm{~mL})$ at $-40^{\circ} \mathrm{C}$ was added $\mathrm{TMSBr}(75 \mu \mathrm{~L}, 0.56 \mathrm{mmol})$. The resulting mixture was stirred for 2 h , and the temperature was allowed to rise to $0^{\circ} \mathrm{C}$. The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was diluted with AcOEt , washed with saturated NaHCO_{3} and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product was purified by chromatography to give 8 as a crystalline solid, $\mathrm{mp} 122-124^{\circ} \mathrm{C}(18.5 \mathrm{mg}, 72 \%)$: $[\alpha]_{\mathrm{D}}$ $-8.5^{\circ}\left(c 0.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta(\mathrm{ppm})=7.67-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.47-$ $7.38(\mathrm{~m}, 6 \mathrm{H}), 4.56(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.83(\mathrm{dd}, J=3.1,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.56(\mathrm{~m}$, $1 \mathrm{H}), 2.29-2.22(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 0.73(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta(\mathrm{ppm})=$ 176.72 (0), 135.40, 135.37,132.72 (0), 132.61 (0), 129.89, 129.88, $127.78,127.76$. $81.29,74.57,72.34,65.86(-), 40.47,35.93,26.73$, 19.14 (0), 13.81, 8.22; IR: 3580, 2940, 2870,1780, $1595 \mathrm{~cm}^{-1}$; HRMS: $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{5} \mathrm{SiNa}$, calcd: 465.2073, found: 465.2088.
(2R,3S,4R,5S,6S)-6-[(Benzyloxy)methoxy]-6-[(tert-butyldiphenyl-silanyl)oxy]-2-methoxy-4-methoxymethoxy-3,5-dimethyl-1-trityloxyheptane (9). To a solution of $7(632 \mathrm{mg}, 1.0 \mathrm{mmol})$ in THF- $\mathrm{H}_{2} \mathrm{O}(10$ $\mathrm{mL}, 4: 1$) was added NaBH_{4} ($510 \mathrm{mg}, 15$ equiv), and the resulting mixture was stirred for 72 h at room temperature. The reaction was carefully quenched with $2 \% \mathrm{HCl}$, and the reaction mixture was extracted with AcOEt. The combined organic extracts were washed with
saturated NaHCO_{3}, saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The product was purified by chromatography to afford the diol as an oil ($495 \mathrm{mg}, 82 \%$): $[\alpha]_{\mathrm{D}}-9.1^{\circ}\left(c 1.8, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$: $\delta(\mathrm{ppm})=7.73-7.66(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.26(\mathrm{~m}, 11 \mathrm{H}), 4.86(\mathrm{~d}, J=6.94$ $\mathrm{Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}, J=4.4,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.70(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.57(\mathrm{dd}, J=6.3,13.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 3.86-3.64(\mathrm{~m}, 4 \mathrm{H})$, $3.59-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.34(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.71(\mathrm{~m}$, $1 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}: \delta(\mathrm{ppm})=137.66(0), 135.61,135.59,135.56,133.26(0)$, 133.25 (0), 129.69, 128.33, 127.71, 127.66, 127.63, 127.59, 98.89, 94.66, 82.08, 80.58, 70.80, 70.01(0), 65.17 (0),64.06 (0), 56.02, 37.97, $37.03,26.78,19.16$ (0), 10.54, 10.26; IR: 3460 (br), 1960, 1890, 1830, 1730, $1590 \mathrm{~cm}^{-1}$; HRMS: $\mathrm{C}_{35} \mathrm{H}_{50} \mathrm{O}_{7} \mathrm{SiNa}$, calcd: 633.3223, found: 633.3197.

To a solution of the above diol ($495 \mathrm{mg}, 0.81 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL) was added trityl-4-dimethylaminopyridium chloride ($649 \mathrm{mg}, 2$ equiv), and the resulting mixture was refluxed for 7 h . After removing solvent, the residue was purified by chromatography to give the trityl ether as an oil ($418 \mathrm{mg}, 60 \%$) and starting material diol (109 mg , $22 \%):[\alpha]_{\mathrm{D}}-0.5^{\circ}\left(c 1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta(\mathrm{ppm})=7.71-7.68$ $(\mathrm{m}, 4 \mathrm{H}), 7.51-7.22(\mathrm{~m}, 26 \mathrm{H}), 4.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.55$ $(\mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{br}, 1 \mathrm{H}), 3.90-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{dd}, J=$ $4.8,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.37-3.31(\mathrm{~m}$, $1 \mathrm{H}), 3.23(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=6.0,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~m}$, $1 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.74(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta(\mathrm{ppm})=144.14(0), 137.88(0), 135.64$, $135.61,133$. 39 (0), 133.37, 129.63, 128.70, 128.30, 127.76, 127.73, $127.67,127.63,127.50,126.88,98.95(-), 94.85(-), 86.45(0), 82.11$, $80.81,69.92(-), 69.05(-), 65.84(-), 64.39,55.96,37.91,37.18$, 26.82, 19.20 (0), 10.20, 9.98; IR: 3460 (br), 2950, 1960, 1890, 1830, 1730, $1590 \mathrm{~cm}^{-1}$; HRMS: $\mathrm{C}_{54} \mathrm{H}_{64} \mathrm{O}_{7} \mathrm{SiNa}$, calcd: 875.4318, found: 875.4321.

To a solution of the above compound ($411 \mathrm{mg}, 0.48 \mathrm{mmol}$) in DMF $(4 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ were added sodium hydride $(60 \%$ in mineral oil, 191 $\mathrm{mg}, 10$ equiv) and then methyl iodide $(0.45 \mathrm{~mL}, 7.2 \mathrm{mmol})$. The reaction was continued for 1 h at room temperature and quenched with MeOH . The product was directly purified by chromatography to afford 9 as an oil (408 mg, 97\%): $[\alpha]_{\mathrm{D}}-13.1^{\circ}\left(c \quad 1.9, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta$ $(\mathrm{ppm})=7.73-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.22(\mathrm{~m}, 26 \mathrm{H}), 4.87(\mathrm{dd}, J=6.1$, $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.75(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.66$ $(\mathrm{d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{dd}, J=2.7,11.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.86(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.64(\mathrm{~m}, 1 \mathrm{H})$, $3.39(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.10(\mathrm{dd}, J=5.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.03(\mathrm{~m}$, $1 \mathrm{H}), 1.89(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 0.84(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta(\mathrm{ppm})=144.12,138.14,135.66,135.62$, $133.56,129.57,129.54,128.68,128.19,127.70,127.61,127.59,127.53$, $127.31,126.86,98.67,95.18,86.70,81.38,81.16,79.24,69.67,64.85$, $58.19,55.57,38.38,36.46,26.80,19.23,10.21,9.54$; IR: 2930, 1960, 1890, 1830, 1730, $1600 \mathrm{~cm}^{-1}$; MS: $889(\mathrm{M}+23), 867(\mathrm{M}+1)$.
(4R,5R,6S,7S,8R)-4-[(Benzyloxy)methoxy]-8-methoxy-6-meth-oxymethoxy-5,7-dimethyl-9-trityloxynon-2-enoic Acid Methyl Ester (10). To a solution of $9(404 \mathrm{mg}, 0.47 \mathrm{mmol})$ in THF $(4 \mathrm{~mL})$ was added TBAF (1.0 M in THF, $0.93 \mathrm{~mL}, 2$ equiv) at room temperature, and the reaction was continued for 4.5 h . The product was purified by chromatography to afford the alcohol as an oil ($283 \mathrm{mg}, 96 \%$): $[\alpha]_{\mathrm{D}}$ $-0.9^{\circ}\left(c 1.56, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta(\mathrm{ppm})=7.48-7.46(\mathrm{~m}, 6 \mathrm{H})$, $7.37-7.22(\mathrm{~m}, 14 \mathrm{H}), 4.90(\mathrm{dd}, J=7.0,15.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{~d}, J=$ $11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=6.5,15.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{~d}, J=11.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86(\mathrm{br}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.44$ $(\mathrm{m}, 2 \mathrm{H}), 3.41-3.59(\mathrm{~s}, \mathrm{~s}, \mathrm{~m}, 8 \mathrm{H}), 3.10(\mathrm{dd}, J=5.6,9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.92-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.67(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta(\mathrm{ppm})=144.04(0), 137.18$ (0), 128.64, 128.47, 127.86, 127.73, 127.91, 98.76 (-), 95.64 (-), 86.74 (0), 84.97, 81.47, 79.18, $70.14(-), 64.56(-), 64.09(-), 58.05,55.67$, $38.11,36.13,10.16,9.85$; IR: 3440 (br), 2950, 1960, 1830, $1600 \mathrm{~cm}^{-1}$; HRMS: $\mathrm{C}_{39} \mathrm{H}_{49} \mathrm{O}_{7}$, calcd: 629.3478, found: 629.3473.

To a solution of oxalyl chloride ($28 \mathrm{~mL}, 0.32 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5$ $\mathrm{mL})$ at $-70^{\circ} \mathrm{C}$ was added DMSO ($45 \mathrm{~mL}, 0.62 \mathrm{mmol}$), and the resulting mixture was stirred for 15 min during which time the temperature was allowed to rise to $-55^{\circ} \mathrm{C}$, and then a solution of the above alcohol ($34 \mathrm{mg}, 0.54 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added. The
reaction mixture was warmed to $-40{ }^{\circ} \mathrm{C}$ during 20 min , triethylamine ($178 \mathrm{~mL}, 1.28 \mathrm{mmol}$) was added, and then the temperature was allowed to rise further to $-30^{\circ} \mathrm{C}$ over 30 min . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ for 2 h . The solvent was removed, and the crude aldehyde was dried using an oil pump for 2 h .

To a solution of the above crude aldehyde in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added methyl (triphenylphosphoranylidene) acetate ($86 \mathrm{mg}, 0.25 \mathrm{mmol}$), and the resulting mixture was stirred for 14 h at room temperature. After removal solvent, the residue was purified by chromatography to afford 10 as an oil ($34 \mathrm{mg}, 92 \%$): $[\alpha]_{\mathrm{D}}-15.8^{\circ}\left(c 1.38, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}-$ NMR: $\delta(\mathrm{ppm})=7.49-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.37-7.22(\mathrm{~m}, 14 \mathrm{H}), 6.87(\mathrm{dd}$, $J=7.9,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{dd}, J=0.8,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.86-4.74(\mathrm{~m}$, $2 \mathrm{H}), 4.70(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H}), 4.13(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.86(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{~s}$, $3 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.38-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=5.6,9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.95-1.76(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.69(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}: ~ \delta(\mathrm{ppm})=166.43(0), 148.10(0), 144.03,137.68$ (0), 128.64, 128.28, 127.77, 127.72, 127.59, 126.90, 122.57, 98.69 (-), 93.78 (-), $86.72(0), 80.97,79.31,79.22,69.91(-), 64.53(-), 58.16$, 55.67, 51.54, 39.33, 38.25, 10.08, 9.85; IR: 2930, 1960, 1830, 1720, 1665, $1600 \mathrm{~cm}^{-1}$; HRMS: $\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{O}_{6} \mathrm{Na}$, calcd: 705.3403, found: 705.3367.
($3 R, 4 R, 5 R, 6 S, 7 S, 8 R)-4-[(B e n z y l o x y) m e t h o x y]-8-m e t h o x y-6-m e t h-$ oxymethoxy-3,5,7-trimethyl-9-trityloxynonanoic Acid Methyl Ester (11). To a suspension of $\mathrm{CuI}(368 \mathrm{mg}, 1.9 \mathrm{mmol})$ in THF (12 mL) was added $\mathrm{MeLi} \cdot \mathrm{LiBr}(1.5 \mathrm{M}$ in ether, $2.6 \mathrm{~mL}, 3.8 \mathrm{mmol})$ at $-15^{\circ} \mathrm{C}$, and the mixture was allowed to warm up to $0^{\circ} \mathrm{C}$ over 30 min and then cooled to $-78{ }^{\circ} \mathrm{C}$. To the resulting mixture was added $\mathrm{Me}_{3} \mathrm{SiCl}(0.73$ $\mathrm{mL}, 5.8 \mathrm{mmol})$, followed by a solution of $\mathbf{1 0}(220 \mathrm{mg}, 0.32 \mathrm{mmol})$ in THF (2 mL). The reaction was continued for 3 h at $-78^{\circ} \mathrm{C}$ and then quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was diluted with AcOEt and concentrated $\mathrm{NH}_{4} \mathrm{OH}$, the aqueous layer was extracted with AcOEt , and the combined organic extracts were washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}-$ $\mathrm{NH}_{4} \mathrm{OH}(1: 1)$, saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by chromatography to afford $\mathbf{1 1}$ as an oil ($188 \mathrm{mg}, 83 \%$): $[\alpha]-37.5^{\circ}\left(c 2.95, \mathrm{CHCl}_{3}\right.$); ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta(\mathrm{ppm})$ $=7.49-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.39-7.22(\mathrm{~m}, 14 \mathrm{H}), 4.87(\mathrm{dd}, J=6.7,11.8$ $\mathrm{Hz}, 2 \mathrm{H}), 4.76(\mathrm{dd}, J=1.9,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.69(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4,63(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3,84(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.72(\mathrm{~m}$, $1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{dd}, J=1.5,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.41-$ $3.36(\mathrm{~m}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.08(\mathrm{dd}, J=3.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{dd}$, $J=2.6,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=10.1,14.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.89-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=6.6 \mathrm{~Hz}$, $3 \mathrm{H}), 0.89(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.69(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta$ $(\mathrm{ppm})=174.11(0), 144.06(0), 138.00(0), 128.65,128.23,127.72$, 127.71, 127.39, 126.89, $98.65(-), 97.22(-), 86.72(0), 86.44,82.01$, $79.06,69.83,64.64,57.98,55.36,51.43,38.37,37.75,35.12(-), 32.38$, 18.32, $10.29,10.21$; IR: $2950,1960,1830,1740,1600 \mathrm{~cm}^{-1}$; HRMS: $\mathrm{C}_{43} \mathrm{H}_{54} \mathrm{O}_{8} \mathrm{Na}$, calcd: 721.3716 , found: 721.3758 .
($2 R, 3 R, 4 R, 5 R, 6 S, 7 S, 8 R)-4-[(B e n z y l o x y) m e t h o x y]-2-h y d r o x y-8-$ methoxy-6-methoxymethoxy-3,5,7-trimethyl-9-trityloxynonanoic Acid Methyl Ester (12). To a solution of $\mathbf{1 1}(187 \mathrm{mg}, 0.27 \mathrm{mmol})$ in THF $(2.5 \mathrm{~mL})$ was added KHMDS (0.5 M in toluene, $0.81 \mathrm{~mL}, 0.40 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 min , and a solution of Davis oxaziridine reagent ${ }^{7 \mathrm{~b}}(141 \mathrm{mg}, 0.54 \mathrm{mmol})$ in THF (2 mL) was added. The reaction was continued for 3 h at $-78^{\circ} \mathrm{C}$ and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was extracted with AcOEt, and the combined organic extracts were washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by chromatography to give $\mathbf{1 2}$ as an oil ($145 \mathrm{mg}, 76 \%$): $[\alpha]_{\mathrm{D}}-30.5^{\circ}$, (c 1.7, CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta(\mathrm{ppm})=7.49-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.37-7.22(\mathrm{~m}$, $14 \mathrm{H}), 4.90(\mathrm{dd}, J=6.7,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 4.68-4.64(\mathrm{~m}$, $3 \mathrm{H}), 3.82-3.70(\mathrm{~s}, \mathrm{~m}, 7 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.41-3,35(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{~s}$, $3 \mathrm{H}), 3.09$ (dd, $J=6.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2,34-2.31(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.89$ $(\mathrm{m}, 2 \mathrm{H}), 1.04(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.70(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta(\mathrm{ppm})=173.88(0), 144.02(0), 137.31$ (0), 128.63, 128.37, 128.35, 128.33, 127.83, 127.81, 127.80, 127.78, 127.74, 127.66, 126.92, $98.56(-), 97.47(-), 87.59(0), 86.74,81.44$, $78.98,70.99,70.29(-), 64.46(-), 57.95,55.47,52.20,38.46,37.69$,
37.21, 12.23, 10.83, 10.36; IR: 3480 (br), 2950, 1960, 1830, 1760, $17401600 \mathrm{~cm}^{-1}$; HRMS: $\mathrm{C}_{43} \mathrm{H}_{54} \mathrm{O}_{9} \mathrm{Na}$, calcd: 737.3665, found: 737.3644.
(3R,4R,5R)-3-Hydroxy-5-[(1S,2S,3S,4R)-5-Hydroxy-4-methoxy-2-methoxymethoxy-1,3-dimethylpentyl]-4-methyldihydrofuran-2one (13). A mixture of $12(14 \mathrm{mg})$ and $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}(20 \mathrm{mg})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$ under 1 atm hydrogen was stirred at room temperature for 20 h . The resulting mixture was filtered through a pad of Celite to remove the catalyst. The product was purified by chromatography to give crystalline 13, mp $114-116{ }^{\circ} \mathrm{C}(5 \mathrm{mg}, 80 \%):[\alpha]_{\mathrm{D}}-35.0^{\circ}(c$ $\left.0.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta(\mathrm{ppm})=4.72(\mathrm{dd}, J=6.4,17.6 \mathrm{~Hz}, 2 \mathrm{H})$, $4.16(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=8.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.79-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.57-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.41$ $(\mathrm{s}, 3 \mathrm{H}), 2.24-2.21(\mathrm{~m}, 1 \mathrm{H}), 1.97-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.35(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}), 0.96(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$: $\delta(\mathrm{ppm})=175.94(0), 99.13(-), 83.96,81.74,80.05,75.09,63.18$ (-), 58.25, 55.79, 43.13, 41.20, 37.82, 17.02, 10.34, 8.95; IR: 3580, 2940, $17801610 \mathrm{~cm}^{-1}$; HRMS: $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{7} \mathrm{Na}$, calcd: 343.1732, found: 343.1740.
(2R,3S,4S,5S,6S,7S,8R)-2,4-Bis-[(benzyloxy)methoxy]-8-methoxy-6-methoxymethoxy-3,5,7-trimethyl-9-trityloxynonan-1-ol (14). To a solution of $\mathbf{1 2}(117 \mathrm{mg}, 0.164 \mathrm{mmol})$ and diisopropylethylamine $(0.87$ $\mathrm{mL}, 4.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ was added $\mathrm{BOMCl}(0.68 \mathrm{~mL}, 4.9$ mmol) dropwise, and the resulting mixture was stirred at room temperature for 60 h . The product was purified by chromatography directly to afford the ester as an oil ($106 \mathrm{mg}, 77 \%$): $[\alpha]_{\mathrm{D}}-25.5^{\circ}(c$ $0.8, \mathrm{CHCl}_{3}$); ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta(\mathrm{ppm})=7.48-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.39-7.22(\mathrm{~m}$, $19 \mathrm{H}), 4.89-4.83(\mathrm{~m}, 3 \mathrm{H}), 4.79-4.70(\mathrm{~m}, 4 \mathrm{H}), 4.66-4.61(\mathrm{~m}, 3 \mathrm{H})$, $4.41(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.64(\mathrm{~m}, \mathrm{~s}, 5 \mathrm{H}), 3,58(\mathrm{dd}, J=3.9$, $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.36(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{dd}$, $J=5.8,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.67(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$-NMR: $\delta(\mathrm{ppm})=173.38,144.06,137.90,137.73,128.64,128.30$, $128.25,127.74,127.72,127.56,127.43,126.88,98.64,96.97,94.57$, 86.68, 85.34, 81.40, 78.90, 76.01, 70.03, 69.91, 64.59, 58.02, 55.54, $51.83,38.64,38.51,37.66,13.10,10.75,10.37$; IR: 2950, 1960, 1830, 1750, $1600 \mathrm{~cm}^{-1}$; HRMS: $\mathrm{C}_{51} \mathrm{H}_{62} \mathrm{O}_{10} \mathrm{Na}$, calcd: 857.4240, found: 857.4280.

To a solution of the above ester ($123 \mathrm{mg}, 0.15 \mathrm{mmol}$) in THF (2 $\mathrm{mL})$ at $-78^{\circ} \mathrm{C}$ was added DIBAL-H (1.0 M in toluene, $0.36 \mathrm{~mL}, 0.36$ mmol) dropwise over 30 min , and the reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . The mixture was cooled to $-78^{\circ} \mathrm{C}$, quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and then diluted with AcOEt and $2 \% \mathrm{HCl}$. The aqueous layer was extracted with AcOEt, and the combined organic layers were washed with saturated NaHCO_{3}, saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by chromatography to afford $\mathbf{1 4}$ as an oil ($98.4 \mathrm{mg}, 83 \%$): $[\alpha]_{\mathrm{D}}-39.4^{\circ}$ (c 1.2, CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}: ~ \delta(\mathrm{ppm})=7.51-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.41-7.23$ $(\mathrm{m}, 19 \mathrm{H}), 4.90-4.88(\mathrm{~m}, 3 \mathrm{H}), 4.83-4.75(\mathrm{~m}, 4 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 4.60$ (dd, $J=0.6,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.65(\mathrm{~m}, 5 \mathrm{H}), 3.61(\mathrm{dd}, J=3.2,8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.45-3.31(\mathrm{~s}, \mathrm{~m}, 5 \mathrm{H}), 3.09(\mathrm{dd}, J=5.7,9.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.08-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H}), 0.93(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$: $\delta(\mathrm{ppm})=144.09(0), 137.85(0), 137.24(0), 128.67,128.49,128.31$, 127.86, 127.81, 127.79, 127.78, 127.75, 127.53, 126.91, 98.66 (-), $96.93(-), 95.58(-), 86.73(0), 85.44,82.74,81.53,79.04,70.03(-)$, $69.99(-), 64.76(-), 64.64(-), 58.08,55.60,38.52,37.58,13.36$, 11.11, 10.41; IR: 3460 2950, 1920, 1820, 1600, 1495, $1390 \mathrm{~cm}^{-1}$; HRMS: $\mathrm{C}_{50} \mathrm{H}_{62} \mathrm{O}_{9} \mathrm{Na}$, calcd: 829.4291, found: 829.4259.
(4S,5R,6R,7R,8S,9S,10R)-4,6-Bis-[(benzyloxy)methoxy]-10-meth-oxy-8-methoxymethoxy-5,7,9-trimethyl-11-trityloxy-undec-2enoic Acid Methyl Ester (15). To a solution of oxalyl chloride (53 $\mathrm{mL}, 0.6 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ at $-70^{\circ} \mathrm{C}$ was added DMSO (86 $\mathrm{mL}, 1.2 \mathrm{mmol}$), the resulting mixture was stirred for 15 min during which time the temperature was allowed to rise to $-55^{\circ} \mathrm{C}$, and then a solution of $\mathbf{1 4}(98 \mathrm{mg}, 0.12 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added. The reaction mixture was warmed to $-40^{\circ} \mathrm{C}$ during 20 min , triethylamine ($338 \mathrm{~mL}, 2.4 \mathrm{mmol}$) was added, and then the temperature was allowed to rise further to $-30^{\circ} \mathrm{C}$ over 30 min . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with $2 \% \mathrm{HCl}$, saturated NaHCO_{3}, and brine, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$
for 2 h . After removal of solvent, the crude aldehyde was dried using an oil pump for 2 h .

To a solution of the above crude aldehyde in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added methyl (triphenylphosphoranylidene) acetate ($200 \mathrm{mg}, 0.6 \mathrm{mmol}$), and the resulting mixture was stirred for 14 h at room temperature. After removal of solvent, the residue was purified by chromatography to afford 15 as an oil $(87 \mathrm{mg}, 83 \%):[\alpha]_{\mathrm{D}}+0.6^{\circ}\left(c \quad 1.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-$ NMR: $\delta(\mathrm{ppm})=7.49-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.34-7.22(\mathrm{~m}, 19 \mathrm{H}), 6.99(\mathrm{dd}$, $J=6.6,15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.05(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.77-4.69(\mathrm{~m}, 4 \mathrm{H}), 4.67(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.60(\mathrm{~d}, J=11.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.44(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}$, $3 \mathrm{H}), 3.61(\mathrm{dd}, J=2.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.39-3.37(\mathrm{~m}, 3 \mathrm{H})$, $3.34(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{dd}, J=5.6,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.13-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.95-$ $1.83(\mathrm{~m}, 2 \mathrm{H}), 1.15(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.66$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta(\mathrm{ppm})=166.53(0), 148.24(0)$, 144.07, 137.95 (0), 137.65 (0), 128.65, 128.35, 128.27, 127.80, 127.72, $127.63,127.44,126.89,121.81,98.64(-), 97.04(-), 92.95(-), 86.72$ (0), 85.06, 81.57, 78.97, 76.47, $69.94(-), 69.86(-), 64.71(-), 58.02$, $55.51,51.52,40.58,38.44,37.74,13.36,10.88,10.26$; IR: 2960,1960 , 1830, 1720, 1625, $1600 \mathrm{~cm}^{-1}$; HRMS: $\mathrm{C}_{53} \mathrm{H}_{64} \mathrm{O}_{10} \mathrm{Na}$, calcd: 883.4397, found: 883.4423 .
$(3 S, 4 S, 5 R, 6 R, 7 R, 8 S, 9 S, 10 R)-4,6$-Bis-[(benzyloxy)methoxy]-10-methoxy-8-methoxymethoxy-3,5,7,9-tetramethyl-11-trityloxyundecanoic Acid Methyl Ester (16). To a suspension of $\mathrm{CuI}(114 \mathrm{mg}, 0.6$ $\mathrm{mmol})$ in THF (6 mL) was added $\mathrm{MeLi} \cdot \mathrm{LiBr}(1.5 \mathrm{M}$ in ether, 0.8 mL , 1.2 mmol) at $-15^{\circ} \mathrm{C}$, and the mixture was allowed to warm up to 0 ${ }^{\circ} \mathrm{C}$ over 30 min and then cooled to $-78^{\circ} \mathrm{C}$. To the resulting mixture were added $\mathrm{Me}_{3} \mathrm{SiCl}(227 \mathrm{~mL}, 1.8 \mathrm{mmol})$ and a solution of $\mathbf{1 5}(86 \mathrm{mg}$, $0.1 \mathrm{mmol})$ in THF (2.5 mL). The reaction was continued for 3.5 h at $-78^{\circ} \mathrm{C}$ and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was diluted with AcOEt and concentrated $\mathrm{NH}_{4} \mathrm{OH}$, the aqueous layer was extracted with AcOEt, and the combined organic extracts were washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}-\mathrm{NH}_{4} \mathrm{OH}(1: 1)$, saturated $\mathrm{NH}_{4} \mathrm{Cl}$, and brine and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by chromatography to afford 16 as an oil $(75 \mathrm{mg}, 86 \%)$: $[\alpha]_{\mathrm{D}}-21.8^{\circ}\left(c 1.6, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}-\mathrm{NMR}: \delta(\mathrm{ppm})=7.49-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.35-7.23(\mathrm{~m}, 19 \mathrm{H}), 4.89-$ $4.84(\mathrm{~m}, 3 \mathrm{H}), 4.79-4.77(\mathrm{~m}, 3 \mathrm{H}), 4.71(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~s}$, $2 \mathrm{H}), 4.59(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.62-$ $3.60(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.37(\mathrm{~s}, 3 \mathrm{H}), 3.07$ (dd, $J=5.8,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.71(\mathrm{dd}, J=3.7,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.30(\mathrm{~m}$, $1 \mathrm{H}), 2.18(\mathrm{dd}, J=9.8,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.83$ $(\mathrm{m}, 2 \mathrm{H}), 1.05(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.69(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta(\mathrm{ppm})=$ 173.89 (0), 144.04 (0), 137.93 (0), 137.91 (0), 128.61, 128.31, 128.30, 128.28, 128.27, 128.26, 128.25, 128.20, 127.67, 127.62, 127.61, 127.47, $127.38,126.84,98.62(-), 96.95(-), 96.51(-), 86.66(0), 85.69,83.11$, 81.24, 78.95, $70.05(-), 69.75(-), 64.64(-), 58.05,55.58,51.28$, $51.27,38.48,37.88,37.12,37.08(-), 34.17,17.54,12.40,10.90,10.34$; IR: 2950, 1960, 1830, 1730, $1600 \mathrm{~cm}^{-1}$; HRMS: $\mathrm{C}_{54} \mathrm{H}_{68} \mathrm{O}_{10} \mathrm{Na}$, calcd: 899.4710 , found: 899.4720 .
(2S,3S,4S,5R,6R,7R,8S,9S,10R)-4,6-Bis-[(benzyloxy)methoxy]-2-hydroxy-10-methoxy-8-methoxymethoxy-3,5,7,9-tetramethyl-11-
trityloxyundecanoic Acid Methyl Ester (17). To a solution of 16 $(43 \mathrm{mg}, 0.05 \mathrm{mmol})$ in THF $(1 \mathrm{~mL})$ was added KHMDS $(0.5 \mathrm{M}$ in toluene, $147 \mathrm{~mL}, 0.07 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$. The resulting mixture was stirred for 30 min , and then a solution of the Davis oxaziridine reagent ${ }^{7 \mathrm{~b}}$ $(26 \mathrm{mg}, 0.1 \mathrm{mmol})$ in THF (1 mL) was added. The reaction was continued for 3 h at $-78^{\circ} \mathrm{C}$ and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The reaction mixture was extracted with AcOEt , and the combined organic extracts were washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and brine then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by chromatography to give 17 as an oil ($31 \mathrm{mg}, 71 \%$): $[\alpha]_{\mathrm{D}}-22.4^{\circ}\left(c 1.6, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta$ $(\mathrm{ppm})=7.48-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.33-7.22(\mathrm{~m}, 19 \mathrm{H}), 4.91(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.87(\mathrm{~s}, 2 \mathrm{H}), 4.84(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~m}, 3 \mathrm{H}), 4.67(\mathrm{~d}$, $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 3 \mathrm{H}), 4.59(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.76$ $(\mathrm{m}, \mathrm{s}, 5 \mathrm{H}), 3.63-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.35$ $(\mathrm{s}, 3 \mathrm{H}), 3.07(\mathrm{dd}, J=5.8,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 1 \mathrm{H})$, $1.86(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.86$ $(\mathrm{d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.68(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}: \delta(\mathrm{ppm})=$ 175.18 (0), 144.04 (0), 137.90 (0), 137.50 (0), 128.61, 128.33, 128.17, $128.16,127.69,127.65,127.61,127.52,127.36,126.82,98.58(-)$, $97.16(-), 96.83(-), 86.69(0), 86.54,81.08,80.29,78.88,70.50$, 70.22 , (-), $69.82(-), 64.54(-), 57.98,55.50,52.11,39.89,38.54$, $37.24,36.58,12.04,10.97,10.93,10.43$; IR: 3500 (br), 2960, 1960, 1830, 1730, $1600 \mathrm{~cm}^{-1}$; HRMS: $\mathrm{C}_{54} \mathrm{H}_{68} \mathrm{O}_{11} \mathrm{Na}$, calcd: 915.4659, found: 915.4647.
(3S,4S,5R)-5-[(1S,2S,3R,4S,5S,6R)-2,7-Dihydroxy-6-methoxy-4-methoxymethoxy-1,3,5-trimethylheptyl)]-3-hydroxy-4-methyldihy-drofuran-2-one (18). A mixture of $17(12.4 \mathrm{mg})$ and $20 \% \mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}$ $(13 \mathrm{mg})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$ under 1 atm hydrogen was stirred at room temperature for 6 h . The resulting mixture was filtered through a pad of Celite to remove the catalyst. The product was purified by chromatography to give 18 as an amorphous solid ($4 \mathrm{mg}, 76 \%$): $[\alpha]_{\mathrm{D}}$ $-27.5^{\circ}\left(c 0.4, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}: \delta(\mathrm{ppm})=4.76(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{~d}, J$ $=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.82-3.79(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.53-3.45(\mathrm{~m}, 3 \mathrm{H}), 3.45(\mathrm{~s}$, $3 \mathrm{H}), 3.44(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{br}, 1 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.98(\mathrm{~m}$, $1 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{br}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.99$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $3 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}: \delta(\mathrm{ppm})=176.63(0), 99.10(-), 81.79,81.26,79.83$, $76.05,74.35,63.20(-), 57.67,55.88,41.09,38.41,36.61,36.34,14.07$, $10.74,10.69,10.50$; IR: 3500 (br), $2950,1780,1740,1600 \mathrm{~cm}^{-1}$; HRMS: $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{8}$, calcd: 401.2151, found: 401.2155 .

Acknowledgment. We thank NSERC for generous financial support through the Medicinal Chemistry Chair Program. We thank Dr. Michel Simard of the X-ray Crystallography Laboratory for X-ray analyses.

Supporting Information Available: NMR and X-ray analyses for selected compounds (30 pages). See any current masthead page for ordering and Internet access instructions.

JA970251G

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, October 1, 1997.
 (1) For recent reviews, see (a) O"Hagen, D. Nat. Prod. Rep. 1995, 12, 1. (b) Dutton, C. J.; Banks, B. J.; Cooper, C. B. Nat. Prod. Rep. 1995, 12, 165.
 (2) See, for example: Corey, E. J.; Cheng, X. M. The Logic of Chemical Synthesis; Wiley: New York, 1989. The Total Synthesis of Natural Products; ApSimon, J. A., Ed.; Wiley: New York, 1988-1994; Vol. 1-8. Studies in Natural Product Synthesis; Atta-ur-Rahman, Ed.; Elsevier: Amsterdam, Vol. 1-13. Recent progress in the Chemical Synthesis of Antibiotics and Related Microbial Products; Lukacs, G., Ed.; Springer-Verlag: Heidelberg, 1993; Vol. 2. Macrolides-chemistry, pharmacology and clinical uses; Bryskier, A. J., Butzler, J.-P., Neu, H. C., Tulkens, P. M., Eds.; Arnette Blackwell: Paris, 1993; Antibiotics and Antiviral Compounds, Chemical Synthesis and Modification; Krohn, K., Kirst, H. A., Maag, H., Eds.; VCH: Weinheim, 1993
 (3) Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1987, 26, 489.
 (4) For a historical perspective of scholarly contributions, see: (a) Evans, D. A. Aldrich. Acta 1982, 15, 23. (b) Masamune, S.; Choy, W. Aldrich. Acta 1982, 15, 47. (c) Mukaiyama, T. Org. React. (NY) 1982, 28, 103. (d) Hoffmann, R. W. Angew. Chem., Int. Ed. Engl. 1982, 21, 555. (e) Heathcock, C. H. Aldrich. Acta 1990, 23, 99.
 (5) See, for example: (a) Danishefsky, S. J. Aldrich. Acta 1986, 19, 59. (b) Hanessian, S. Aldrich. Acta 1989, 22, 3. (c) Marshall, J. A.; Perkins, J. F.; Wolf, M. A. J. Org. Chem. 1995, 60, 5556. (d) Vogel, P.; Sevin, A.-F.; Kernen, P.; Bialecki, M. Pure Appl. Chem. 1996, 68, 719. (e) Jain, N. F.; Takenaka, N.; Panek, J. S. J. Am. Chem. Soc. 1996, 118, 12475.

[^1]: (6) (a) Hanessian, S.; Sumi, K. Synthesis 1991, 1083. (b) Hanessian, S.; Gai, Y.; Wang, W. Tetrahedron Lett. 1996, 37, 7473.
 (7) (a) Davis, F. A.; Chen, B.-C. Chem. Rev. 1992, 92, 919. (b) Vishwakarma, L. C.; Stringer, O. D.; Davis, F. A., Org. Synth. 1987, 66, 203.
 (8) Hanessian, S.; Wang, W.; Gai, Y. Tetrahedron Lett. 1996, 37, 7477.
 (9) For related examples, see: Hanessian, S.; Murray, P. J.; Sahoo, S. P. Tetrahedron Lett. 1985, 26, 5627. Hanessian, S.; Murray, P. J. Tetrahedron 1987, 43, 5055; see also ref 5b.

[^2]: (10) (a) Mitsunobu, O. Synthesis 1981, 1. (b) Hughes, D. L. Org. React. ($N Y$) 1992, 42, 335.
 (11) (a) Oishi, T.; Nakata, T. Acc. Chem. Res. 1984, 17, 338. (b) Bloch, R.; Gilbert, L.; Girard, C. Tetrahedron Lett. 1988, 29, 1021. (c) Yamashita, H.; Narasaka, K. Chem. Lett. 1996, 539.

[^3]: (12) For the total synthesis of rifamycin S, see: (a) Nagaoka, H.; Rutsch, W.; Schmid, G.; Iio, H.; Johnson, M. R.; Kishi, Y. J. Am. Chem. Soc. 1980, 102, 7962. (b) Iio, H.; Nagaoka, H.; Kishi, Y. J. Am. Chem. Soc. 1980, 102, 7965. For the synthesis of the ansa chain, see: (c) Nakata, M.; Takao, H.; Ikeyyama, Y.; Sakai, T.; Tatsuta, K.; Kinoshita, M. Bull. Chem. Soc. Jpn. 1981, 54, 1749. (d) Masamune, S.; Imperiali, B.; Garvey, D. S. J. Am. Chem. Soc. 1982, 104, 5528. (e) Hanessian, S.; Pougny, J. -R.; Bossenkool, I. K. J. Am. Chem. Soc. 1982, 104, 6164. (f) Still, W. C.; Barrish, J. C. J. Am. Chem. Soc. 1983, 105, 2487. (g) Fraser-Reid, B.; Magdzinski, L.; Molino, B. J. Am. Chem. Soc. 1984, 106, 731. (h) Danishefsky, S. J.; Myles, D. C.; Harvey, D. F. J. Am. Chem. Soc. 1987, 109, 862. (i) Roush, W. R.; Palkowitz, A. D. J. Am. Chem. Soc. 1987, 109, 953. (j) Ziegler, F. E.; Cain W. T.; Kneisley, A.; Stirchak, E. P.; Wester, R. T. J. Am. Chem. Soc. 1988, 110, 5442. (k) Katsuki, T.; Hanamota, T.; Yamaguchi, M. Chem. Lett. 1989, 117. (1) Paterson, I.; McClure C. K.; Schumann, R. C. Tetrahedron Lett. 1989, 30, 1293. (m) Harada, T.; Kagamihara, Y.; Tanaka, S.; Sakamoto, K.; Oku, A. J. Org. Chem. 1992, 57, 1637. (n) Lautens, M.; Belter, R. K. Tetrahedron Lett. 1992, 33, 2617. (o) Miyashita, M.; Yoshihara, K.; Kawamine, K.; Hoshino, M.; Irie, H. Tetrahedron Lett. 1993, 34, 6285.
 (13) For a computer-aided prediction of stereochemical array in macrolides and ionophores, see: Hanessian, S.; Botta, M.; Larouche, B.; Boyaroglu, A. J. Chem. Inf. Comput. Sci. 1992, 32, 718.
 (14) Isolation and structure elucidation, see: (a) Arai, M. J. Antibiot. Ser. A 1960, 13, 46, 51. (b) Takahashi, S.; Ohki, E. Chem. Pharm. Bull. 1967, 15, 1726. (c) Kaiser, H.; Keller-Scheirlein, W. Helv. Chim. Acta 1981, 64, 407. (d) Neupert-Laves, K.; Dobler, M. Helv. Chim. Acta 1982, 65, 262.
 (15) Isolation and structure elucidation, see: (a)Werner, G.; Hagenmaier, H.; Albert, K.; Kohlshorn, H.; Drautz, H. Tetrahedron Lett. 1983, 24, 5193. (b) Corey, E. J.; Ponder, J. W. Tetrahedron Lett. 1984, 25, 4325. (c) Baker, G. H.; Brown, P. J.; Dorgan, R. J. J.; Everett, J. R.; Ley, S. V.; Slawin, A. M. Z; Williams, D. J. Tetrahedron Lett. 1987, 28, 5565.

[^4]: (16) (a) Perlmutter, P. Conjugate Addition Reaction in Organic Synthesis. Pergamon: New York, NY, 1992. (b) Dorigo, A. E.; Morokuma, K. J. Am. Chem. Soc. 1989, 111, 6524. (c) Yamamoto, Y.; Chounan, Y.; Nishii, S.; Ibuka, T.; Kitahara, H. J. Am. Chem. Soc. 1992, 114, 7652.
 (17) Paddon-Row, M. N.; Rondan, N. G.; Houk, K. N. J. Am. Chem. Soc. 1982, 104, 7162.

[^5]: (18) Morizawa, Y.; Yasuda, A.; Uchida, K. Tetrahedron Lett. 1986, 27, 1833.
 (19) For the total synthesis, see: (a) Evans, D. A.; Calter, M. A. Tetrahedron Lett. 1993, 34, 6871. (b) Toshima, K.; Jyojima, T.; Yamaguchi, H.; Murase, H.; Yoshida, T.; Matsumura, S.; Nakata, M. Tetrahedron Lett. 1996, 37, 1069. (c) Toshima, K.; Yamaguchi, H.; Jyojima, T.; Noguchi, Y.; Nakata, M.; Matsumura, S. Tetrahedron Lett. 1996, 37, 1073. (d) Toshima, K.; Jyojima, T.; Yamaguchi, H.; Noguchi, Y.; Yoshida, T.; Murase, H.; Nakata, M.; Matsumura, S. J. Org. Chem. 1997, 62, 3271. For the synthesis of segments, see: (e) Roush, W. R.; Bannister, T. D. Tetrahedron Lett. 1992, 33, 3587. (f) Roush, W. R.; Bannister, T. D.; Wendt, M. D. Tetrahedron Lett. 1993, 34, 8387. (g) Paterson, I.; Bower, S.; Mcleod, M. D. Tetrahedron Lett. 1995, 36, 175.

[^6]: (20) For the total synthesis of hygrolidin, see: Makino, K.; Nakajima, N.; Hashimoto, S.-i.; Yonemitsu, O. Tetrahedron Lett. 1996, 37, 9077.
 (21) (a) Seebach, D.; Chow, H.-F.; Jackson, R. F. W.; Lawson, K.; Sutter, M. A.; Thaisrivongs, S.; Zimmermann, J. J. Am. Chem. Soc. 1985, 107, 5292. (b) Toshima, K.; Tatsuta, K.; Kinoshita, M. Bull. Chem. Soc. Jpn. 1988, 61, 2369. (c) Evans, D. A.; Fitch, D. M. J. Org. Chem. 1997, 62, 454.
 (22) Paterson, I.; Watson, C.; Yeung, K.-S.; Wallace, P. A.; Ward, R. A. J. Org. Chem. 1997, 62, 452.
 (23) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

